A functional screening using this library led to the identification of hsa-miR-30b and hsa-miR-30c as negative regulators of cell death induced by loss of attachment (anoikis). Importantly, we demonstrated that the acquisition of anoikis resistance
via these miRNAs is achieved through down-regulation of caspase 3 expression. Moreover, overexpression of these miRNAs resulted in a decrease of other types of caspase 3-dependent cell death and enhanced the survival of MCF10A acinar cells in morphogenesis assays, suggesting a putative role as oncomirs. In summary, this novel methodology provides a powerful and effective way for identifying novel small RNAs involved in a particular biological process.”
“3′-End cleavage of animal replication-dependent histone pre-mRNAs is controlled by the U7 snRNP. Lsm11, the largest component check details of the U7-specific Sm ring, interacts with FLASH, and in mammalian nuclear extracts these two proteins form a platform that recruits the CPSF73 endonuclease and other polyadenylation factors to the U7 snRNP. FLASH is limiting, and the majority of the U7 snRNP in mammalian extracts exists as a core particle consisting of the U7 snRNA and the Sm ring. Here, we purified the U7 snRNP from Drosophila nuclear extracts and characterized its composition by mass spectrometry. In contrast to the mammalian U7 snRNP,
a significant fraction of the Drosophila U7 snRNP contains endogenous FLASH and at least six subunits of the polyadenylation machinery: symplekin, CPSF73, CPSF100, CPSF160, WDR33, and CstF64. The same composite U7 snRNP is recruited find more to histone pre-mRNA for 3′-end processing.
We identified a motif in Drosophila FLASH that is essential for the recruitment of the polyadenylation complex to the U7 snRNP and analyzed the Morin Hydrate role of other factors, including SLBP and Ars2, in 3′-end processing of Drosophila histone pre-mRNAs. SLBP that binds the upstream stem-loop structure likely recruits a yet-unidentified essential component(s) to the processing machinery. In contrast, Ars2, a protein previously shown to interact with FLASH in mammalian cells, is dispensable for processing in Drosophila. Our studies also demonstrate that Drosophila symplekin and three factors involved in cleavage and polyadenylation-CPSF, CstF, and CF I-m-are present in Drosophila nuclear extracts in a stable supercomplex.”
“MicroRNAs (miRNAs) are involved in a variety of human diseases by simultaneously suppressing many gene targets. Thus, the therapeutic value of miRNAs has been intensely studied. However, there are potential limitations with miRNA-based therapeutics such as a relatively moderate impact on gene target regulation and cellular phenotypic control. To address these issues, we proposed to design new chimeric small RNAs (aiRNAs) by incorporating sequences from both miRNAs and siRNAs.