We also designed specific primers based on the ITS2 sequences, an

We also designed specific primers based on the ITS2 sequences, and performed real-time quantitative PCR (qPCR)-based molecular detection of O. petrowi from DNA extracted from fecal samples

SBI-0206965 clinical trial collected from Northern Bobwhite and Scaled Quail in Texas. Understanding the biology of this parasitic nematode at molecular levels will enable us to effectively determine the prevalence by detecting parasite-specific DNA in feces, as well as to identify infected intermediate hosts that is otherwise difficult (if not impossible) based on morphology of larval stages. Molecular tools would enable further study of potential drug targets and target-based drug discovery to treat this important nematode. Methods Isolation of genomic DNA and genome sequence

survey Adult O. petrowi worms were isolated from Belnacasan datasheet the eyes of Northern Bobwhites collected in Texas as part of a 3-year integrated research project called Operation Idiopathic Decline, which was initiated to further our understanding of potentially pathogenic parasites occurring within the Rolling Plains Ecoregion of Texas and western Oklahoma. All animal experiments were performed in accordance with procedures approved by the Institutional Animal Care and Use Committee of Texas A&M University (protocol # 2011–193). After microscopic Luminespib examination for species validation, four worms were rinsed with PBS, placed in lysis buffer of the DNeasy Blood & Tissue Kit (Qiagen Inc., Valencia, CA), and grinded with a plastic microtube grinder. Genomic DNA (gDNA) was isolated from the ground worms according to manufacturer’s protocol for animal tissues. For the construction of a genomic library, gDNA was first subjected to whole genome amplification using a GenomePlex Complete Whole Genome Amplification (WGA) kit according the manufacturer’s standard protocol (Sigma-Aldrich

Co., St. Louis, MO). Amplified gDNA products were fractionated in agarose gels and fractions containing fragments between 0.5 – 2 kb were collected and purified using a Gel Extraction Kit (Omega Bio-Tek, Norcross, GA). After an incubation at 72°C for 20 min in a Carteolol HCl regular PCR reaction buffer to add a single adenine overhang to the 3’-end, the products were ligated into pCR2.1-TOPO vector using a TOPO-TA cloning kit (Invitrogen, Life Technologies, Grand Island, NY). After transformation, Escherichia coli OneShot TOP10F’ chemically competent cells (Invitrogen) were plated onto LB plates spread with 40 μL of 40 mg/mL X-gal and 5 μL of 200 mM/mL IPTG, and incubated at 37°C overnight. Bacteria from a single white colony were collected into 10 μL Milli-Q water in a microtube, from which 2 μL of suspension was used directly as template in PCR reactions to determine the presence of inserts using a pair of M13 forward and M13 reverse primers. Colonies containing inserts with desired sizes were further incubated in LB broth containing 50 μg/mL kanamycin.

Comments are closed.