In this study, we have characterized the effect
of the MgFnr protein on growth and magnetite biomineralization in MSR-1. Deletion of Mgfnr did not affect the growth yield, but impaired magnetosome formation under microaerobic conditions only in the presence of nitrate (i.e., when denitrification was active) but not in its absence. This implies that MgFnr might be involved in magnetite synthesis by regulation of denitrification genes, whereas Protein Tyrosine Kinase inhibitor expression of terminal oxidases for O2 respiration is likely not under the control of MgFnr, similar to Fnr from Shewanella oneidensis[33]. In fact, we found that neither the rates of oxygen consumption nor transcription of terminal oxidase genes [34] displayed any difference between the WT and ΔMgfnr mutant. The presence of putative Fnr binding sites in the promoter regions of all operons of denitrification further indicates that MgFnr is involved in controlling the transcription of denitrification genes in response to different oxygen concentrations. Consistent with this, transcription patterns of denitrification genes in ΔMgfnr mutant were different from WT. For example, in the ΔMgfnr strain the expression of nap was no longer selleck inhibitor upregulated by oxygen, expression of nirS was much higher under aerobic conditions than WT, and aerobic expression of nor and nosZ was no longer repressed but upregulated by oxygen. Furthermore,
we failed to identify a putative Fnr protein encoded in the genome of the nondenitrifying magnetotactic bacteria Magnetococcus marinus or Desulfovibrio magneticus strain RS-1, which also suggests that selleck chemicals llc Fnr of MTB is likely only responsible to regulate genes encoding for denitrification, but not required for aerobic respiration. In addition, we also observed significantly decreased N2 evolution in deep slush agar tubes in ΔMgfnr mutant. This raised the question at which step(s) of
denitrification is affected by the loss of MgFnr. We propose that this is BCKDHB not likely caused by the reduction steps from NO3 – to N2O based on the following observations: (i) The consumption rate of NO3 – and NO2 – did not decrease in ΔMgfnr mutant; (ii) NO is lethal to the cells while no defective growth was found in ΔMgfnr mutant, and no NO emission was observed during mass spectrometry experiments which also implies that the activity of NO reductase is not decreased; (iii) The N2O emission rate after addition of nitrate was similar for ΔMgfnr mutant and WT. Therefore, we conclude that loss of MgFnr affects the last step of denitrification, the reduction of N2O to N2. In agreement, the emission rate of N2 was lower for ΔMgfnr mutant than for the WT. However, we cannot exclude the possibility that loss of MgFnr has an impact on further pathways involved in biomineralization other than denitrification.