ELSA is a unique single source of detailed data on socioeconomic status and health, and this is the first study to compare inequalities in illness burden, self-reported medical diagnosis and treatment of long-term conditions in a EGFR phosphorylation panel study over time. ELSA used robust measures of individual socioeconomic position, and standardised scales and blood biomarker to assess health status. This exploratory study has some limitations and the results should be interpreted with caution and tested in subsequent research. While standardised measures were used to estimate
the illness burden of depression, angina and diabetes, symptoms alone were
used for osteoarthritis and cataract, and the attributed symptoms were not specific for osteoarthritis and cataract. However, this lack of specificity is unlikely to vary with wealth, and so is not likely to be an important source of bias. Self-reported data may be a source of bias if self-report varies by factors other than objective health status, such as wealth or social experience. This is a recognised problem with some self-reported morbidity data, but is less of a problem with sensory assessment for pain, which is essentially self-perceived, and where self-report is the best means of assessment.26 We have not adjusted for health-related factors that are also more prevalent in poorer populations, such as smoking, obesity and comorbidity, because none of these are a reason for not making a diagnosis. Comorbid conditions are commoner in those with lower socioeconomic status, but there is no evidence that comorbidities make a new diagnosis less likely. On the contrary, a higher number of comorbid conditions in older people may be associated with higher quality of care.27 We found different patterns in different conditions, which fits with other research showing that wealth acts differently in different conditions, Brefeldin_A and for example, has no
association with referral for postmenopausal bleeding.28 Major national policy interventions such as the Quality and Outcomes Framework payment for performance scheme in primary care29 have been associated with improved healthcare for included conditions such as angina and diabetes, more than for excluded conditions such osteoarthritis and poor vision.30–32 The serial cross-sectional analysis of four waves of ELSA included all eligible participants in each wave in order to maximise the sample size. This approach meant that some participants with a diagnosed condition would no longer have had symptoms or raised biomarkers, if they were being successfully treated.