CrossRef 3. Spielmann Ch, Szipöcs R, Stingl A, Krausz F: Tunneling of optical pulses through photonic band gaps. Phys Rev Lett 1994, 73:2308.CrossRef
4. Ranfagni A, Mugnai D, Fabeni P, Pazzi GP: Delay-time measurements in narrowed waveguides as a test of tunneling. Appl Phys Lett 58:774–1991. 5. Enders A, Nimtz G: On superluminal barrier traversal. J Phys France 1992, I 2:1693. 6. Leavens CR, Aers GC: Dwell time and phase times for transmission and reflection. Phys Rev B 1989, 39:1202.CrossRef 7. Pereyra P: Closed formulas for tunneling time in superlattices. Phys Rev Lett 2000, 84:1772.CrossRef 8. Olkhovsky VS, Recami E, Salesi G: Superluminal tunneling through two successive barriers. Europhys Lett 2002, 57:879–2002.CrossRef 9. Winful HG: Apparent superluminality and the generalized Hartman effect in double-barrier tunneling. Phys Rev E 2005, 72:046608.CrossRef MK-8669 10. Longhi S, Laporta P, Belmonte M, Recami E: Measurement of superluminal optical tunneling times in double-barrier photonic band gaps. Phys Rev E 2002, 65:046610.CrossRef 11. Esposito S: Multibarrier tunneling. SAHA HDAC price Phys Rev E 2003, 67:016609.CrossRef 12. Pereyra P: Fundamentals of Quantum Physics. Heidelberg: Springer Verlag; 2012.CrossRef 13. Kudaka S, Matsumoto S: Questions concerning the generalized Hartman effect. Phys Lett A 2011, 375:3259.CrossRef 14. Kudaka S, Matsumoto S: Reply to Comments on: ‘questions concerning the generalized
Hartman effect’. Phys Lett A 2012, 376:1403.CrossRef 15. Nimtz G, Haibel A, Vetter RM: Pulse reflection by photonic barriers. Phys Rev E 2002, Protirelin 66:037602.CrossRef 16. Pereyra P, Castillo E: Theory of finite periodic systems: general expressions and various
simple and illustrative examples. Phys Rev B 2002, 65:205120.CrossRef 17. Simanjuntak HP, Pereyra P: Evolution and tunneling time of electron wave packets through a superlattice. Phys Rev B 2003, 67:045301.CrossRef 18. Pereyra P, Simanjuntak HP: Time evolution of electromagnetic wave packets through superlattices: evidence for superluminal velocities. Phys Rev E 2007, 75:056604.CrossRef 19. Morse PM, Feshbach V: Methods of Theoretical Physics. Part I. New York: McGraw Hill; 1953. Competing interests The authors declare that they have no competing interest. Authors’ contributions HPS initialized the work. Both authors carried out the calculations. Both authors read and approved the final manuscript.”
“Background The biocompatibility of gold nanoparticles, along with their tunable plasmon resonances and the ability to accumulate at targeted cancer sites, has proven them to be very effective agents for absorption-based photothermal therapy and scattering-based imaging applications [1–8]. Amongst the commonly used gold nanoparticles, silica-core gold nanoshells exhibit larger photothermal efficiency as compared to gold nanorods of equal number densities [1], whereas hollow gold nanoshells (HGNs) absorb light stronger than the silica-core gold nanoshells do [9, 10].