The important finding of an association with hypocretin
genes in animal models of narcolepsy has led to the establishment of cerebrospinal fluid hypocretin measurements as a new diagnostic test for human narcolepsy. This is a fascinating story of translation of basic science research into clinical practice in sleep medicine during the past decade. Recent advances have shed light on the associations between respiratory medicine and narcolepsycataplexy research. The first is that upper airway infections, including H1N1 and/or streptococcal infections, may initiate or reactivate an immune response that leads to loss of hypocretin-secreting cells and narcolepsy in genetically susceptible individuals. The second is that an increased incidence of sleep disordered breathing
among narcoleptic subjects may relate to the impairment of central control of breathing, linked to hypocretin Small molecule library deficiency or carriage of HLADQB1*06:02, in animals and human subjects with narcolepsy, Cyclopamine respectively, indicating neural dysfunction in an area where respiratory and sleepwake systems are closely interrelated.”
“In electroporation, an electric field transiently permeabilizes the cell membrane to gain access to the cytoplasm, and to deliver active agents such as DNA, proteins, and drug molecules. Past work suggests that the permeabilization is caused by the formation of aqueous, conducting pores on the lipid membrane, which are also known as electropores. The current-voltage relation across the membrane-bound pores is critical for understanding and predicting electroporation. In this work, we solve the Nernst-Planck equations
in a geometry encompassing an isolated electropore to investigate this relation. In particular, we study cases where the intra- and GSK2879552 in vitro extracellular electrical conductivities differ. We first derive an analytical solution, which is subsequently validated with a direct numerical simulation using a finite volume method. The main result of the current work is a formula for the effective pore resistance as a function of the pore radius, the membrane thickness, and the intra- and extracellular conductivities. This formula can be incorporated into whole-cell or planar-membrane electroporation models for system-level prediction and understanding.”
“Influenza presents a unique human infectious disease that has a substantial impact on the public health, in general, and especially for those with chronic airways diseases. People with asthma and chronic obstructive pulmonary disease (COPD) are particularly vulnerable to influenza infection and experience more severe symptoms with the worsening of their pre-existing conditions. Recent advances in reverse genetics and innate immunity has revealed several influenza virulence factors and host factors involved in influenza pathogenesis and the immune responses to infection.