However, the neural and molecular mechanisms involved in memory facilitation by ICSS are not known. Here, we investigated the influence of ICSS treatment on hippocampal gene expression in order to identify potential signaling pathways and cellular processes involved in ICSS-mediated cognitive improvements. Immunohistochemistry studies demonstrated that ICSS caused a rapid induction of c-Fos expression in hippocampal cornu ammonis (CA) 3 and dentatus gyrus areas. Moreover, using microarray or quantitative real-time polymerase chain reaction (PCR) analysis, we showed that ICSS modulates the expression of 62 hippocampal genes shortly Selleckchem GSK126 after training. Most of the proteins encoded by these genes, such as calmodulin-dependent-phosphodiesterase
1 A (Pde1a), are part of signal transduction machineries or are related to antiapoptosis, as heat shock 70 kDa protein 1A (Hspa1a). Importantly, 10 of the regulated genes have been previously related with learning and memory or neural plasticity, including the cocaine and amphetamine-regulated transcript (Cart), adenylate cyclase activating polypeptide 1 (Adcyap1), serum/glucocorticoid regulated kinase (Sgk), Ret proto-oncogene (Ret), and Fos. The fact that the Fos gene was differentially expressed in our microarray experiments validated our findings from our immunohistochemical
studies mentioned above. In addition, using quantitative real-time PCR, we confirmed the observed expression https://www.selleckchem.com/products/lcl161.html changes for several of the genes identified by our microarray analyses. Our results suggest that ICSS may facilitate all learning and memory by regulation of multiple signaling pathways in the hippocampus that may promote neuroplasticity. (C) 2009 IBRO. Published by
Elsevier Ltd. All rights reserved.”
“The Picornaviridae family comprises a diverse group of small RNA viruses that cause a variety of human and animal diseases. Some of these viruses are known to induce cleavage of components of the innate immune system and to inhibit steps in the interferon pathway that lead to the production of type I interferon. There has been no study of the effect of picornaviral infection on the events that occur after interferons have been produced. To determine whether members of the Enterovirus genus can antagonize the antiviral activity of interferon-stimulated genes (ISGs), we pretreated cells with alpha interferon (IFN-alpha) and then infected the cells with poliovirus type 1, 2, or 3; enterovirus type 70; or human rhinovirus type 16. We found that these viruses were able to replicate in IFN-alpha-pretreated cells but that replication of vesicular stomatitis virus, a Rhabdovirus, and encephalomyocarditis virus (EMCV), a picornavirus of the Cardiovirus genus, was completely inhibited. Although EMCV is sensitive to IFN-alpha, coinfection of cells with poliovirus and EMCV leads to EMCV replication in IFN-alpha-pretreated cells.