The IL-10 amounts and IL-10/IL-12 ratios induced by the pts19ADCBR deletion mutant were significantly different from wild-type
L. Crenigacestat chemical structure plantarum WCFS1 for only the stationary-phase cultures. Stationary-phase cells of the ΔlamA ΔlamR mutant also induced significantly higher amounts of IL-10 and IL-12 in compared with L. plantarum WCFS1 harvested at the same growth phase. However, differences between IL-10/IL-12 ratios induced by ΔlamA ΔlamR and wild-type cell differed only for exponential phase cultures. This result might have been partially MAPK inhibitor due to the extensive alterations in expression of L. plantarum ΔlamA ΔlamR in actively growing cultures [39], such that differences in expression DNA Damage inhibitor of lamBDCA and lamKR regulated genes might have influenced the ability of the exponential-phase L. plantarum cells to stimulate different PBMC IL -10/IL -12 ratios. A similar result was
found for the comparisons of L. plantarum plnG (and plnEFI), the other 2 TCS system examined, although the specific growth-phase-dependent modifications of the plantaricin system on cytokine production in PBMCs is not presently known. Conclusions The present study compared the genetic and phenotypic diversity of L. plantarum WCFS1 to identify cell components of this species with the capacity to modulate human PBMC responses. We successfully identified several L. plantarum WCFS1 genes that are associated with the production of anti- and pro-inflammatory cytokines by PBMCs and established that the immune response to L. plantarum can be significantly altered by the deletion of specific L.
plantarum cell surface proteins. The increased IL-10/IL-12 ratios of the L. plantarum mutants indicate that these cultures would be more protective Tau-protein kinase against intestinal inflammation compared with wild-type cells. These effects might be mediated by the down-regulation of local inflammatory responses through various subsets of T cells producing a collection anti-inflammatory cytokines. As a result of this study, strain selection for protection against intestinal inflammation might include screening for strains lacking the LamB, PlnG, or Pts19 homologs or by modifying culture growth conditions or food delivery matrices to minimize the expression of these genes in vivo. Such studies are required to distinguish between health effects conferred by individual probiotic strains and to develop methods to ensure that probiotic cells express host-modulatory cell products at the appropriate level and time in food products and the human gut. Methods Bacterial strains Immune assays and genetic analysis was performed on a total of 42 L. plantarum strains with distinct phenotypic profiles [27, 28] (Table 1). Comparative genome hybridization (CGH) of these strains was performed previously [27, 28]. For immunoprofiling, the L.