Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vascul

Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis is a complex disease with a strong underlying autoimmune diathesis. Its precise aetiology remains unknown, but contributions from both heritable and environmental factors seems certain. The pathogenic mechanisms that are then triggered involve diverse cell types, inflammatory mediators and signalling cascades. What selleckchem have we learned from this bewildering array of altered biological processes about the pathogenesis of the disease over the past 2 years? Turning first to the genome, familial segregation of Wegener’s granulomatosis (WG) with a 1·56 relative risk for first-degree relatives of patients

with WG, suggests a genetic basis [1]. Indeed, new associations between ANCA vasculitis and genetic polymorphisms are reported almost monthly from candidate gene association studies. The pattern that is emerging points to a polygenic contribution from relatively common variants that are found throughout the population, each of which may only provide a modest effect. Many of the genes described so far encode proteins that are involved in the immune response, such as human leucocyte antigen (HLA) proteins, PTPN22, CTLA4 and others (reviewed

in [2]). Genomewide association studies that are in progress will doubtless provide further insights. Environmental factors appear to contribute variously (reviewed in [3]). Multiple reports attest to the abilities of drugs such as the anti-thyroid agent propylthiouracil

LDK378 to induce myeloperoxidase (MPO)-ANCA and, in a minority of individuals, to trigger overt vasculitis. Environmental toxins have been implicated, with the strongest epidemiological evidence emerging around silica, a potential activator of the inflammasome complex that generates, among other activities, the active cytokine interleukin (IL)-1 [4]. Infections have been linked repeatedly to pathogenesis of vasculitis. Protein kinase N1 Clinical association studies have shown an enhanced likelihood of relapse in nasal carriers of Staphylococcus aureus; α-toxin from S. aureus is also a potent activator of the NLRP3 inflammasome, suggesting potential links between different environmental agents and their proinflammatory effects in vasculitis [5]. Infection has also been implicated in the formation of the most recently described type of ANCA, namely lysosomal-associated membrane protein 2 (LAMP-2); Kain has suggested that anti-LAMP-2 antibodies are important in the pathogenesis of vasculitis and has provided evidence of molecular mimicry between LAMP-2 and the bacterial adhesion protein Fim-H [6]. Links with infection via homology between the middle portion of the complementary proteinase 3 (cPR3) sequence and S.

Comments are closed.