5. ConclusionsAn explicit dynamic nonlinear geometric scheme was adopted to simulate the vertical push, wind-up, and roll load http://www.selleckchem.com/products/GDC-0449.html cases of the parabolic leaf spring of a bus. An FE-based procedure dealing with the evaluation and assessment of the parabolic leaf spring of the bus was presented. Modeling details for an accurate calculation of the spring are discussed. New parabolic leaf spring designs are included in the analysis to obtain an improved bus load-carrying capability, braking resistance, and roll resistance, which were determined through the analysis of vertical stiffness, wind-up stiffness, and roll stiffness. In addition to the vertical, wind-up, and roll stiffness provided by the parabolic leaf springs, the stress level of the spring component itself is plotted and monitored to ensure falling within the controlled limit.
Hence, no failures are expected when the new parabolic leaf spring designs are implemented in the vehicle. In this analysis, the designed parabolic leaf spring with higher vertical stiffness leads to higher wind-up and roll stiffness. The new parabolic leaf spring design with the highest vertical stiffness should possess higher load-carrying capability, braking instability resistance, and roll stability compared with the others. The stress level observed for the new leaf spring designs under these circumstances is lower compared with the original design. The chances of failure are reduced, and vehicle safety is enhanced under a braking or pothole strike condition. Vehicle safety is increased because of the increase in suspension reliability.
AcknowledgmentsThis work is financially supported by Universiti Kebangsaan Malaysia a.k.a The National University of Malaysia under research Grant code ��Industri-2012-037�� and APM Engineering and Research Sdn Bhd.
The population structure, dispersal capabilities, and systematics of mosquitoes in the genus Culex (Culicidae: Culicinae: Culicini) from the Sonoran Desert of North America are poorly known. Several species reported from this region, including Cx. quinquefasciatus Say, a member of the Cx. pipiens Linnaeus complex, and Cx. tarsalis Coquillett, are important vectors of the West Nile and St. Louis encephalitis viruses that infect humans.
Although presently not as serious of a health problem in Mexico as the dengue fever virus vectored by the introduced Aedes aegypti (Linnaeus), a single mortality from West GSK-3 Nile viral infection recorded in 2009 in the northern city of Monterrey, Nuevo Le��n [1], and an infection reported from southern Sonora in which the patient later recovered [2], raises concern that there is a potential for this disease to emerge in northern Mexico and that it should be monitored more closely by health officials. Owing to the lack of a vaccine for the West Nile virus, vector control is the only tool presently available to combat this disease.